

Multidisciplinary, Multi-Lingual, Peer Reviewed Open Access Journal

issn: 3048-6971

Vol. 3, Issue 1, January-March 2025

Available online: https://www.biharshodhsamaagam.com/

सांभर झील को प्रभावित करने वाले कारको का वैज्ञानिक अध्ययन भागीरथ मल रैगर

सहायक आचार्य(शिक्षा संकाय) आई.ए. एस.ई.(मानित विश्वविद्यालय) सरदारशहर,राजस्थान

सारांश:-

वर्तमान अध्ययन सांभर नमक झील पर आयोजित किया गया है, जो सबसे बडा अंतर्देशीय खारा रामसर है। इसका उद्देश्य झील को प्रभावित करने वाले प्रमुख कारकों की पहचान करना है | अवैध नमक पानी अतिक्रमण के कारण झील खतरे में है | भू-स्थानिक मॉडलिंग 96 वर्षों (1963-2059) के लिए एक दशकीय पैमाने पर आयोजित किया गया था, जिसमें जमीनी डेटा (पक्षी-मिट्टी-पानी) को एकीकृत किया गया था। 1972 1981 1992 2009 और 2019 के लिए पर्यवेक्षित वर्गीकरण का उपयोग करते हुए और 2029 2039 2049 और 2059 के लिए भविष्य की भविष्यवाणी का उपयोग करते हुए. लैंडसेट इमेजरी के साथ 1963 की प्रस्तुत की गई। हवाई इमेजरी का उपयोग करके भूमि उपयोग भूमि कवर वर्गीकरण किया गया था।

पिछली प्रवृत्तियों से पता चलता है कि आर्द्रभूमि में 30-7 से 3-4% की कमी एक स्थिर दर (4-23% से लवणीय मिट्टी में हुई है. जो बाद में 9-3% की वृद्धि हुई, जिससे बंजर भूमि में 4-2% की वृद्धि हुई, नमक पैन 6-6% और निपटान 1-2% 2019 तक । भविष्य की भविष्यवाणियां 40% आर्द्रभूमि और 120% लवणीय मिट्टी की हानि और 30% वनस्पति में शुद्ध वृद्धि. 40% बस्ती, 10% नमक पैन, 5% बंजर भूमि, और 20% की शुद्ध हानि, प्रत्येक अरावली पहाड़ियों और नमक को दर्शाती हैं।

इसके अतिरिक्त, जमीनी परिणाम इसके परिवर्तन को दर्शाता है और प्रवासी पिक्षयों की संख्या 30 लाख से 3000 तक कम हो जाती है। पारिस्थितिकी तंत्र की बहाली पर संयुक्त राष्ट्र के दशक (2021-2030) के आलोक में बहाली रणनीतियों का सुझाव दिया जाता है अगर देरी हुई, तो इसके राजस्व सृजन की तुलना में अधिक बहाली पूंजी की आवश्यकता हो सकती है।

म्ख्य शब्द : झील, नमक, सांभर, पक्षी , अरावली पहाड़ियों, पारिस्थितिकी तंत्र

परिचय:- यह व्यापक रूप से माना जाता है कि शुष्क और अर्थ शुष्क क्षेत्र पानी से रहित हैं हालाँकि, उनके पास कई अस्थायी और स्थायी जल निकाय हैं। उनके पास उच्च पारिस्थितिक, आर्थिक, सांस्कृतिक, मनोरंजक और वैज्ञानिक मूल्य भी है। हैरानी की बात है कि ये मीठे पानी के स्रोतों के विकल्प हो सकते हैं, क्योंकि विश्व स्तर पर, खारे झीलों का आयतन 44% और सभी झीलों के क्षेत्रफल का 23% है।

इसके विपरीत, इनकी लवणीय प्रकृति के कारण इन पर बहुत कम ध्यान दिया जाता है, और इस प्रकार जल प्रवाह विचलन, जल विज्ञान संरचनाओं के निर्माण, प्रदूषण, खनन, जैविक व्यवधान और विदेशी प्रजातियों के आक्रमण के अधीन है। नतीजतन, इन झीलों के बीच हाइड्रो पैटर्न, जल बजट, हाइड्रोलॉजिकल संचार, आवास परिवर्तन उत्पादकता में कमी और कनेक्टिविटी में परिवर्तन होता है। इन्हें विस्तारित सूखापन, कम जल अबिध से पीड़ित होने की भी भविष्यवाणी की जाती है, जिससे 2025 तक आंशिक या पूर्ण रूप से सूख जाता है जैसा कि पहले से ही अरल सागर, झील उर्मिया, ओवेन्स झील, तारिम बेसिन और साल्टन सागर में देखा गया है। इन मामलों ने झीगा, खिनज उद्योग के अरबों डॉलर के वैश्विक बाजारों को सीध प्रभावित किया है, और पारिस्थितिक व्यवधान उत्पन्न किया है। इस प्रकार, शुष्क और अर्थ-शुष्क क्षेत्रों में जल संसाधनों का व्यवस्थित मूल्याकन करना महत्वपूर्ण है। नमकीन झीलों पर

पहले के अध्ययन चुनौतीपूर्ण थे क्योंकि वे ज्यादातर दूरदराज और दुर्गम क्षेत्रों में स्थित हैं । आखिरकार इन झीलों पर शोध भौतिक रासायनिक पैरामीटर आकलन फिलिप्साइट रासायनिक और जैविक गुणों फाइटोप्लाकटन प्राथमिक उत्पादकता स्थिर आइसोटोप और नू-रसायन पिछले दशकों तक, अधिकांश अध्ययनों ने इन झीलों में जैव विविधता के स्थानांतरण के लिए जिम्मेदार कारक के रूप में लवणता पर जोर दिया। हालांकि, रिमोट सेंसिंग (आरएस) और भू-स्थानिक प्रौद्योगिकी (जीआईएस) के हालिया अनुप्रयोग ने स्थानिक अस्थायी पैमाने पर परिदृश्य स्तर के अध्ययन की अनुमित दी है ये सुझाव देते हैं कि झील का आकार, आवास विन्यास, एलयूएलसी, लवणता के अलावा आर्द्रभूमि परिवर्तन के लिए प्रेरक कारक हो सकते हैं। अगले दशक में आवास और आला मॉडलिंग, जलवायु सिमुलेशन, आर्द्रभूमि स्वास्थ्य मूल्यांकन, पिछले डाटा प्रवृति विश्लेषण, और इन झीलों के लिए भविष्य की भविष्यवाणियों के व्यापक उपयोग को न केवल ऑप्टिकल बल्कि माइक्रोवेव्, हाइपरस्पेक्ट्रल, मानव रहित हवाई वाहन का उपयोग करने की सभावना है। डेटासेट मशीन लर्निंग, आर्टिफिशियल इंटेलीजेंस, डीप लर्निंग और इंटरनेट ऑफ थिंग्स के साथ एकीकृत है!

इन्हें मानकीकृत करना आसान है और छोटे आदंभूमि परिसरों के साथ भी अनुकरण करने में सक्षम है। इसलिए, यह तेजी से स्थायी प्रबंधन, बहाली, मुकाबला मरुस्थलीकरण, जैव विविधता हानि मूल्यांकन और इन तेजी से गिरावट वाले पारिस्थितिक तंत्रों के जल बजट की समझ को सक्षम करेगां 1

यद्यपि प्रौद्योगिकी में प्रगति ने आगे के शोध को सक्षम किया है, अध्ययन ज्यादातर बडी खारी झीलों (लगभग 250 किनी 2 या अधिक) तक सीमित रहे हैं जैसे ग्रेट साल्ट लेक, ओवेन्स झील, और यूएस के साल्टन सागरय अराल सागर, मृत सागर और एशिया की उर्मिया झील और अफ्रीका की चाड झील |

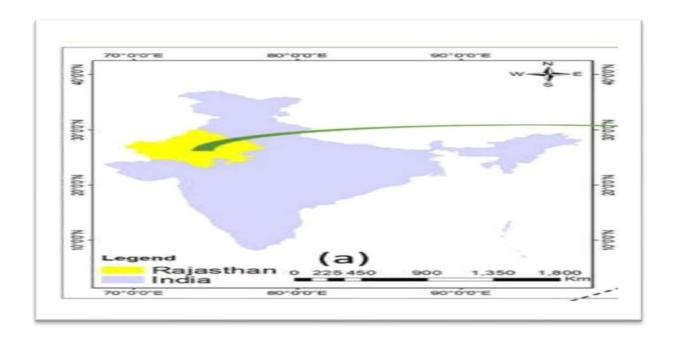
इसके अतिरिक्त, 390 स्थायी और अस्थायी स्थलों के साथ-साथ कई अज्ञात छोटी उथली खारी झीलें भी हेय 2400 रामसर स्थलों में से जिन पर तत्काल ध्यान देने की आवश्यकता है। 198 देशों को निर्यात करते हुए लगभग 230 मिलियन टन का योगदान करते हुए भारत चीन और संयुक्त राज्य अमेरिका के बाद वैश्विक नमक बाजार में तीसरे स्थान पर हैं। कुछ प्रमुख आयातको में बाग्लादेश, जापान, इंडोनेशिया, दक्षिण और उत्तर कोरिया, कतर, मलेशिया, संयुक्त अरब अमीरात और वियतनाम शामिल है। इसके अलावा, भारत में, 96% नमक का उत्पादन गुजरात, तिमलनाडु और राजस्थान राज्यों से होता है, जिसमें क्रमशः 767% 1116% और 986% समुद्र, झील, उप-मृदा नमकीन और सेंधा नमक जमा होते हैं। वर्तमान अध्ययन सांभर साल्ट लेक (एसएसएल) में आयोजित किया गया है। यह भारत का सबसे बड़ा अंतर्देशीय खारा आर्द्रभूमि पारिस्थितिकी तंत्र है। यह भारत में थार रेगिस्तान का प्रवेश दवार भी है। इसे 23 मार्च 1990 को मानदंड के तहत साइट नंबर 464 और महत्वपूर्ण पक्षी क्षेत्र नबर 073 के तहत रामसर साइट के रूप में नामित किया गया था।

एक बार यह 279 प्रवासी और निवासी पिक्षियों के लिए एक आश्रय स्थल था जो वर्तमान में केवल 31 प्रवासी पिक्षियों के लिए एक आश्रय के रूप में कार्य करता है। दिलचस्प बात यह है कि कई वर्षों के भ्रष्टाचार के बावजूद, यह अभी भी देश के संरक्षित नेटवर्क में शामिल नहीं है। इस झील के लिए सबसे बड़ा खतरा कोर एरिया में अवैध अतिक्रमण है। कई अवैध नलकूपों की खुदाई की गई है, और भूजल के अधिक निष्कर्षण के लिए लंबे पंपों का उपयोग किया गया है। पूर्व के अतिक्रमण ने इसे एक बड़े पूंजी-गहन कॉपोरेट व्यवसाय में बदल दिया है।

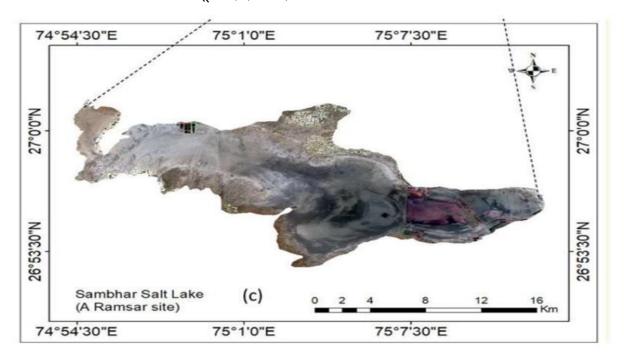
बार-बार नेशनल ग्रीन ट्रिब्यूनल (एनजीटी) के हस्तक्षेप के बाद भी अवैध परिणामों की अनदेखी करना कठिन है।

सामग्री और विधियां

अध्ययन क्षेत्र


एसएसएल राजस्थान के अर्थ शुष्क जलवायु क्षेत्र में है (चित्र) भौगोलिक निर्देशांक 26° 52' से 27° 02' उत्तर के साथय 74 54-75° 14' अंडाकार आकार में दिशा में चल रहा है [20]। यह राष्ट्रीय राजमार्ग 48 और राजस्थान राज्य राजमार्ग 57 के माध्यम से राज्य की राजधानी जयपुर से 807 किमी दूर स्थित है। 1961 में, भारत सरकार (भारत सरकार) ने वाणिज्य और उद्योग मंत्रालय के तहत 99 साल के पट्टे पर इस क्षेत्र का अधिग्रहण किया | एसएसएल 230 किमी 2 (लंबाई में 22.5 किनी और चौड़ाई में 3.1 किमी) है।

दुनिया की सबसे पुरानी पर्वत श्रृंतवलाओं में से एक, अरावली की पहाडियों इसे उत्तर, पश्चिम और दक्षिण-पूर्व दिशाओं में घेरती है, जो 700 मीटर तक फैली हुई है। इसकी अधिकतम ऊचाई समुद्र तल से 300 मीटर ऊपर है, जिसमें 0.1 मीटर प्रति 1000 मीटर ढलान है। अल्पकालिक धाराएँ (मेधा, रूपनगर, खंडेल, खारियान) 5520 किमी का जलग्रहण क्षेत्र बनाती है। मेधा वास्तव में सबसे बड़ी फीडर नदी है जो उत्तर में सीकर जिले से निकलती है और 3600 किमी में निकलती है 1


विशेष रूप से, यह एक उष्णकिटबंधीय जलवायु का अनुभव करता है, और इसकी मिट्टी में गाद और मिट्टी होती है। बेसिन का कुछ भाग चूर्णयुक्त है, जबिक इसका अधिकांश भाग अर्गिजैसियस हैय यह सोडियम, पोटेशियम, कैल्सियम, और मैग्नीशियम उद्धरणों और कार्बोनेट, बाइकार्बोनेट, क्लोराइड और सल्फेट आयनों के लवण में समृद्ध है। यह विशेष रूप से समृद्ध ननक सामग्री वाले हक्षेत्रों में सफेद दिखाई देता हैय कम नमक सामग्री वाले क्षेत्रों में धूसर दिखाई देता है, और बिना तमक सामग्री वाले भूरे रंग का दिखाई देता है।

महत्वपूर्ण रूप से, एसएसएल बड़े पैमाने पर अलग-अलग गमी (मार्च-जून), बरसात के मौसम (जुलाई-सितंबर), और सर्दियों (अक्टूबर-फरवरी) का अनुभव करता है। कुल मिलाकर, यह हर साल लगभग 500 मिमी वर्ष प्राप्त करता है, जबिक यह 250-300 दिनों का आनंद लेता है। इसके अतिरिक्त, औसत तापमान लगभग 24.4 डिग्री सेल्सियस है, जो गर्मियों में 40.7 डिग्री सेल्सियस और सर्दियों में 11 डिग्री सेल्सियस से नीचे चला जाता है। इसके अलावा, बरसात के मौसम में, यह एक मैला काली आर्द्रभूमि जैसा दिखता है।

चित्र 1 (ए)

मानसून के दौरान इसकी गहराई लगभग 3 मीटर होती है लेकिन शुष्क अविध के दौरान 0.6 मीटर तक उथली हो जाती है। जलाशय और नमक के बर्तनों को छोड़कर, गर्मी के दौरान नमक के गुच्छे के संपर्क में आने से पूरी झील सूख जाती है। 5.16 किमी लंबा बांध दो असमान भागों में विभाजित होता है (77 किमी पूर्व की ओर एक जलाशय के रूप में और शेष 113 किमी आर्द्रभूमि है)।(चित्र 2)

अध्ययन क्षेत्र चित्र 1 (ए) राजस्थान राज्य के साथ भारत को पीले रंग में हाइलाइट किया गया है (बी) एसएसएल का ट्र कलर कम्पोजिट 7 मई 2021 के सेंटिनल डेटा सेट का उपयोग करके तैयार किया गया है। यह मध्य एशियाई, पूर्वी एशियाई और पूर्यी अफ्रीकी पलाईवे के प्रवासी पिक्षियों को प्राप्त करता है। अकशेरुकी, उभयचर, क्रस्टेशियंस मानसून के दौरान निर्दयों के माध्यम से आते हैं जब लवणता कम होती है। इसके अलावा, यह 37 जड़ी-बूटियों (पोटुलाका भोलेरासिया साल्सोला फोएटिडा सुएडा फुटिकोज) 14 शाड़ियों (सल्वाडोरा ओलियोइड्स सल्वाडोरा पिसंका, सेरिकोटोमा पॉसीक्लोरम) 14 पेड़ों (बबूल नीलोटिकल बबूल सेनेगल एनोजिसस 15 घास पेडुला } को आश्रय प्रदान करता है। सेंचरस सिलियारिस) 6 क्लोरोफाइसा (चौमाइडोमोनस एसपी । डुनेलियाला सलीना. ओडोगोनियम एसपी । 25 साइनोफाइसी (लिंग्या एसपी। मेरिस्मोपीडिया एसपी। माइक्रोकोले यूएस एसपी।) और 7 बेसिलारियोकाइसी प्रजातियों।

आंकड़ों का विश्लेष्ण

इस अध्ययन में चार प्रकार के आंकडों का प्रयोग किया गया है। ये हैं मिश्री, पानी, पक्षी और रिमोट सेंसिंग डेटा। अध्ययन में इन सभी डेटासेट को मिलाकर एक एकीकृत शोध डिजाइन का भी उपयोग किया गया है। प्रयोग शुरू होने से पहले, पूर्व ज्ञान के लिए एक क्षेत्र का दौरा किया गया था और प्रोटोकॉल विकसित किया गया था। फिर, प्रयोग दो चरणों में आयोजित किया गया था। पहले चरण में, उपग्रह बेटा एकत्र, संसाधित और विश्लेषण किया गया था। दूसरे चरण में, एक नमूना डिजाइन तैयार किया गया था, बाद में प्रयोगशाला में मिट्टी पानी के नमूने एकत्र किए गए और उनका विश्लेषण किया गया, और पक्षी गणना की गई। सारे प्रयोग सर्दियों में किए गए। चूंकि पक्षी सर्दियों के

मौसम में आते है. गर्मियों के विपरीत, जब झील में लगातार जल स्तर होता है, उनके लिए भोजन और प्रजनन की स्विधा होती है। इसलिए, इस मौसम के दौरान परिवर्तन के चालकों की पहचान अभिक सटीक होगी।

स्नू वर्गीकरण एक दशकीय पैमाने पर अतीत, वर्तमान और भविष्य के परिवर्तनों के लिए किया गया था। विशेष रूप से, कोरोना की केवल एक हवाई छवि प्राप्त की गई थी. जो कि किसी भी उपग्रह कार्यक्रम की शुरुआत से काफी पहले की है। इस तस्वीर को कंवल दृश्य व्याख्या और एलयूएलसी कक्षाओं के लिए गणना किए गए क्षेत्र के लिए डिजीटल किया गया हैय परिकलित क्षेत्र, हालांकि, चूंकि यह एक उच्च-रिजॉल्यूशन छवि है, परिकलित क्षेत्र अन्य उपग्रह डेटासेट के साथ तुलनीय नहीं हो सकता है।

डाउनलोड की गई सनी छविया भू-संदर्भित और पूर्व संसाधित थी, जिसमें वायुमंडलीय और प्यामितीय सुधार शामिल थे। मौजूदा इंस्डूमेंटल त्र्टियों, ज्यामितीय और स्केल अनिश्चितता, और सेंसर एमएसएस, टीएम, ईटीएम, ईटीएम और ओएलआई के विभिन्न शोर के कारण लैंडसेट डेटा के लिए प्री-प्रोसेसिंग एक आवश्यक कदम है। एकरूपता बनाए रखने के लिए 1972 और 1981 की छवियों का पैन सापनिंग 30 मीटर स्थानिक संकल्प के लिए किया गया था। भारतीय सर्वेक्षण (1954) से 1:25000 पैमाने पर टोपोशीट का उपयोग सीमा रेखाचित्रण के लिए किया गया था। राजस्थान राज्य वन विभाग के अन्सार, एसएसएन को डिजीटल किया गया था और 3 किमी बफर का चयन किया गया था. क्योंकि इसे पर्यावरण के प्रति संवेदनशील क्षेत्र घोषित किया गया था। वर्गीकरण के लिए, पिक्सेल आधारित पद्धिति का उपयोग ईआरडीएएस इमेजिन, 2014 का उपयोग करके किया गया था, जबकि अंतिम मानचित्रों को आकं जीआईएस 10.5 का उपयोग करके बनाया गया था। इसके अलावा, एसएसएल को पर्यवेक्षित वर्गीकरण पद्धति का उपयोग करते हुए आठ वर्गों में विभाजित किया गया थाय इनमें वेटलैंड, सॉल्ट पैन, सॉल्ट क्रस्ट, वनस्पति, अरावली पहाड़िया पर्वत शृंखला, लवणीय मिट्टी, बत्तर भूमि और बस्ती शामिल है।जल निकाय आर्दभूमि क्षेत्रों का प्रतिनिधित्व करते हैं, जो जलाशय के अंतर्गत नहीं बाते हैं। यह टू कलर कम्पोजिट में गहरे हल्के नीले रंग का दिखाई देता है।दूसरी और नमक पैन नमक उत्पादक इकाइयों हैय नमक की पपड़ी उच्च नमक जमाव क्षेत्र का प्रतिनिधित्व करती है, जो सफेद दिखाई देती है, जबिक वनस्पति हरी दिखाई देती है, और दोनों जेरोफाइट्स और हेलोफाइट्स दवारा करता कर लिया जाता है, अरावली पहाड़ियों पहाड़ी श्रृंखलाओं का प्रतिनिधित्या करती है, जारी मिट्टी झील के स्थलीय हिस्से का प्रतिनिधित्व करती है, जिसमें मिट्टी और नमक की मात्रा ये दिखाई देती है, बंजर भूमि बिना नमक के भूरे रंग के दक्षेत्र को दर्शाती है. जबकि बस्ती एस्एसएल के आसपास के निर्मित क्षेत्र का प्रतिनिधित्व करती है।

इसके अलावा, पिछले परिवर्तन का पता लगाने के लिए एक दशकीय पैमाने पर 47 वर्षा (1972-2019) का आयोजन क्रिया गया था। विशेष रूप से, पिक्सेल आधारित वर्गीकरण का उपयोग करके प्रत्येक छिद का अनुमान लगाया गया था। पर्यवेक्षित अधिकतम संभावना वर्गीकरण पद्धित (एमएलसी) लागू की गई थी। निट्टी और पानी के नमूने संग्रह, पक्षी गणना और दिखाए गए वर्गीकरण के सत्यापन के दौरान झील के अंदर और आसपास से 09 जीपीएस स्थान प्राप्त किए गए थे (चित्र 2)।

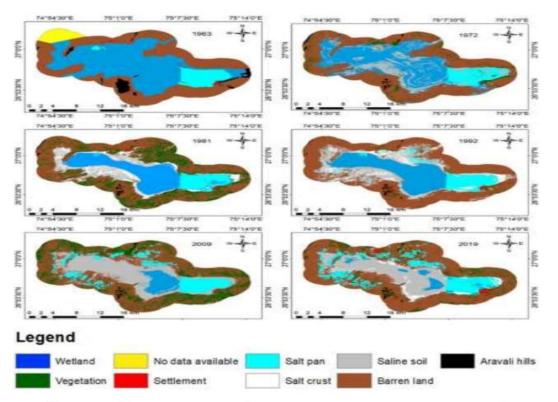
11 जनवरी, 2019 और 6 और 7 जनवरी 2020 को पक्षियों की गणना की गई। सर्वेक्षण से संबंधित वर्षों में 29 और 32 पक्षी प्राजातियों की कुल 1124 और 43445 पक्षियों की संख्या दर्ज की गई (तालिका 1)

2019 में अच्छी बारिश से पिक्षयों की संख्या बढी लवणीय और क्षारीय झीलों के लिए जो उन्हें एसएसएल की ओर आकर्षित करती हैं। महत्वपूर्ण रूप से, कुछ प्रजातियां अकशेरुकीय फोटे ग्रीवे, ग्रेलैग मूज, बार हेडेड गूज, कॉमन टील,नॉर्दर्न शंचिलर, ग्रेट स्टोन प्लोवर, व्हाइट-टेल्ड लैपचिंग ब्लैक-टेल्ड गॉडविट, कॉमन रेडशैक, कर्लेव सैंडपाइपर मार्श सैडपाइपर युद्ध सैडपाइयर को खिलाती हैं। लिटिल स्टिंट, टेमिक्स स्टेट, रफ, हाइट वैगटेल, पे पैगटेल, पिन-टेल्ड

तालिका 1 : जल पक्षियों की सूची

क्रमांक	सामान्य और वैज्ञानिक नाम	2019	2020
	ग्रीब्स		500
1	लिटिल ग्रीबे टैचीबैप्टस रूफिकोलिस	9	एनएफ
5	बगुले, बगुले और कड़वे:		20
2	<i>क्राउन</i> नाइट हेरॉन	3	एनएफ
3	भारतीय तालाब बगुला <i>अर्देओला ग्रेआई</i>	एनएफ	1
4	मवेशी <i>एग्रेट बुबुलकस इबिस</i>	एनएफ	5
	राजहंस:		500
5	ग्रेटर फ्लेमिंगो <i>फोनीकोनियास</i>	331	12,046
6	लेसर फ्लेमिंगो	128	24,413
	हंस और बतख:		
7	ग्रेलाग गूज Anser	6	एनएफ
8	बरहेडेड गूज <i>ए</i> । <i>इंडिकस</i>	18	एनएफ
9	आम पोचार्ड <i>अयथ्या फेरिना</i>	एनएफ	3
10	गडवाल <i>ए</i> । <i>स्ट्रेपेरा</i>	10	एनएफ
1 1	आम टील <i>ए</i> । <i>क्रेक्का</i>	9	एनएफ
12	उत्तरी फावड़ा ए । <i>क्लिपीटा</i>	359	5,293
	गल, टर्न और स्किमर:		
13	ब्राउन-हेडेड गुल <i>एल</i> । <i>ब्रुनिसेफलस</i>	एनएफ	1
	प्लोवर्स:		

स्निप, और येलो पॉटल्ड लैपचिंग एसएसएल में और उसके आसपास पाए जाते है। एक प्रजाति-चार विस्तृत पक्षी गणना में कहा गया है कि कुल 83 जलपक्षी दर्ज किए गए थे। 1994 में, झील पर 8500 कम राजहंस देखे गए थे, लेकिन कोई बहा राजहंस नहीं मिलाय 1995 में 5000 कम राजहंस दर्ज किए गए थे लेकिन कोई बड़ा राजहंस नहीं देखा गया था. 2001 में 20000 पक्षी देखे गए थे, जिनमें से 10000 कम और 5000 अधिक राजहंस थे। पक्षियों की अनुपस्थित को तालिका में नॉट फाउंड (एनएफ) के रूप में दर्शाया गया है।

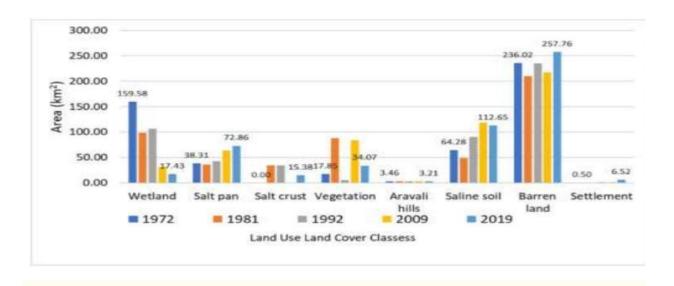

14	ग्रेट स्टोन प्लोवर <i>एसाकस रिकुरविरोस्ट्रिस</i>	1	एनएफ
15	छोटी अंगूठी वाला प्लोवर <i>सी</i> । <i>डबियस</i>	4	25
16	प्रशांत गोल्डन प्लोवर	एनएफ	1
17	केंटिश प्लोवर <i>सी । अलेक्जेंड्रिनस</i>	4	47
18	रेड-वॉटल्ड लैपविंग <i>वी । इंडिकस</i>	12	16
19	सफेद पूंछ वाले लैपविंग <i>वी । श्वेतप्रदर</i>	1	2
	स्टिल्ट्स, एवोकेट्स:		
20	काले पंखों वाला <i>स्टिल्ट</i>	16	112
21	चितकबरा <i>एवोसेट रिकुरविरोस्ट्रा एवोसेटा</i>	34	422
	स्निप्स, कर्लव्स, सैंडपाइपर्स, शैंक्स, गॉडविट्स, स्टिंट्स:		
22	ब्लैक-टेल्ड गॉडविट <i>लिमोसा लिमोसा</i>	2	2
23	यूरेशियन कर्लेव <i>एन</i> । <i>अक्वेंटा</i>	एनएफ	1
24	आम रेडशैंक टी । टोटेनस	3	25
25	आम ग्रीनशैंक <i>टी । निहारिका</i>	एनएफ	5
26	कर्लव सैंडपाइपर <i>सी । फेरुजीनिया</i>	26	एनएफ
27	मार्श सैंडपाइपर <i>टी</i> । <i>स्थिर</i>	1	2
28	ग्रीन सैंडपाइपर <i>टी । ओक्रोपस</i>	एनएफ	2
29	वुड सैंडपाइपर <i>टी . ग्लेयरोला</i>	5	7
30	आम सैंडपाइपर <i>एक्टाइटिस हाइपोल्यूकोस</i>	2	15
31	लिटिल स्टिंट सी । minuta	8	110
32	टेम्मिनक का कार्यकाल <i>सी</i> । <i>टेम्मिंकी</i>	17	9
33	रफ <i>फिलोमाचस पुग्नेक्स</i>	140	441
	किंगफिशर:		
34	सफेद स्तन वाली किंगफिशर <i>एच । स्मिरनेंस</i>	एनएफ	3
	ईगल्स, ओस्प्रे, हैरियर्स, फाल्कन, काइट्स:		
35	वेस्टर्न मार्श-हैरियर सर्कस एरुगिनोसस	एनएफ	1

	वैगटेल्स, पिपिट:		
36	व्हाइट वैगटेल मोटासिला अल्बा	2	3
37	सफेद-भूरे रंग के वैगटेल <i>एम</i> । <i>मदरस्पाटेंसिस</i>	एनएफ	1
38	ग्रे वैगटेल <i>एम</i> । <i>सिनेरिया</i>	1	
	अतिरिक्त प्रजातियां		
39	प्रशांत गोल्डन प्लोवर	एनएफ	1
40	रैप्टर	एनएफ	3
41	क्रेस्टेड लार्की	एनएफ	5
42	ग्रेटर कौल	एनएफ	1
43	पिनटेल्ड स्निप	5	एनएफ
44	पीला लैपविंग	1	एनएफ
45	अपरिभाषित	एनएफ	422
	कुल संख्या	1124	43,445
	कुल प्रजाति संख्या	29	32

परिणाम

कोरोना की दृश्य व्याख्या से चार भू-आकृति इकाइयों (अरावली की पहाड़ियों, निदयाँ, खारी मिट्टी और झील) का पता चला। दो प्रमुख निदयों को उनके आकार के कारण पहचाना गया, उत्तर में मेधा और दिक्षण में रूपनगर उनकी नालों के साथ। उज्ज्वल स्वर और चिकनी बनावट वाली भू-आकृति स्वारी मिट्टी है, जो बाद के वर्षों में और कम हो गई है (चित्र 2)1

1963 में, एसएसएल का क्षेत्रफल 228.80 किमी, अरावली की पहाडियाँ 11.11 किमी, बस्ती 3.40 किमी मिट्टी 0.15 किमी' नमक पैन 39.54 किमी, वनस्पति 5.80 किमी और बंजर भूमि थी। 214.66 किमी था। महत्वपूर्ण रूप से. 1972 की छवि को 0.73 कप्पा गुणांक के साथ 80.95% सटीकता पर, 82.50% पर 0.76, 1992 के साथ 87.50% पर 0.82 200985.71% पर 0.80 और 2019 में 87.50% पर 0.82 पर वर्गीकृत किया गया था। यह सटीकता गतिशील मैट्रिक्स के विश्लेषण में परिलक्षित होती है।



चित्र 2: विगत मानचित्र एसएसएल के 1963 1972 1981 1992 2009 और 2019।

अध्ययन 1972-2019 के बीच 47 वर्षों के लिए स्न्स के क्षेत्र की गिरावट की प्रवृत्ति को दर्शाता है (तालिका 2 चित्र 3)। 1972 में आर्द्धभूमि 159.6 किमी 2 (30%) थी. नमक पैन 38.3 किमी (7.4%), नमक की परत किनी (0%) वनस्पत्ति 17.9 किमी (3.4%) थी, अरावली पहाड़ियों 3.5 किमी (0.7%), लवणीय मिट्टी 64.3 किमी (12.4%) और बंजर भूमि 236.0 किमी 2 (45.4%; थी।

1981 में आर्द्रभूमि 98.7 किमी² (19%), नमक पैन 36.1 किमी (6.9 किमी), नमक की परत 34.4 किमी (5.6%), वनस्पति 87.6 किमी (16.9%) अरावली पहाड़ियों 3.3 किमी थी। 2 (0-6%), खारी मिट्टी 49.1 किमी² (9.4%) बंजर भूमि 209.6 किमी (40.3%) और बस्ती 1.1 किमी (0.2%) थी। 1992 में, आर्द्रभूमि 106.7 किमी (20.5%), नसक पैन 42.8 किमी (8.2%), नमक क्रस्ट 34.7 किमी (6.7%), चनस्पति 5.3 किमी (1.0%), अरावली पहाड़ियों 3.3 किमी थी। 20-6%;, खारी मिट्टी 90.7 किमी (17.5%), बंजर भूमि 235.3 किमी (45.2%) और बस्ती 1.1 किमी² (0.2%) थी।

2009 में, आर्द्रभूमि 31.5 किमी (6.1%), नमक पैन 64.1 किमी (12.3%), नमक क्रस्ट 0.0 किमी (0%) वनस्पति 84.1 किमी² (18.2%), अरावली पहाड़ियाँ 3.2 किमी थी। 2 (0.6%), लवणीय मिट्टी 118.3 किमी (27.7%) बंजर भूमि 217.3 किमी² (41.8%) और बस्ती 1.4 किमी² (0.3%) थी। 2019 में, आर्द्रभूनि 17.4 किमी² (3.4%), नमक पैन 72.9 किमी (14.0%), नमक की परत 15.4 किमी (3.0), वनस्पति 34.1 किमी (6.6%), अरावली की पहाड़ियों 3.2 किनी थी। (0.6%), खारी मिट्टी 112.6 किमी² (21.7%), बंजर भूमि 257.8 किमी (49.6%) और बस्ती 6.5

चित्र 3: स्परिवर्तन का ग्राफ

किमी (1.3%) थी। कुल मिलाकर, 1972 से 2019 के परिवर्तन को संक्षेप में प्रस्तुत किया गया है, क्योंकि आर्द्रभूमि 30.7 से घटकर 3.4% हो गई है।

नमक की परत ॰ से 3% तक बढ़ गई। वनस्पति 3.4 से बढ़कर 6.6% हो गई। अरावली की पहाड़ियों 0.7 से घटकर 0.6% रह गई है। लवणीय गिट्टी 12.4 से बढ़कर 21.7% हो गई। बंजर भूमि 45.4 से बढ़कर 49.6% हो गई। नमक पैन 7.4 से बढ़कर 14% हो गया। निपटान 0.1 से बढ़कर 1.3% हो गया।

यह 1972-2019 के बाद से 14.22% 0.73%] -4.14% और 4-47% की दर से आर्द्रभूमि का क्षरण दर्शाता है। वास्तव में, पहले दशक में वनस्पत्ति का इज्ञ 43.38% और बसावट 12.66% था। साल्ट पैन में 0.63% अरावली की पहाड़ियों में 0.56% लवणीय मिट्टी में 2.62% और बंजर भूमि में 1.24% की कमी आई। इसके अलावा, 1981 से 1992 तक, कंचल चनस्पति नकारात्मक रूप से बदलीय बाकी वर्गों में पेटलैंड में 0.73% सेंॉल्ट पैन में 1.88% सॉल्ट क्रस्ट में 0.08% अरावली की पहाड़ियों में 0.06% लयणीय मिट्टी में 7.71% और बंजर भूमि में 1.11% और बंजर भूमि में 0.43% की वृद्धि हुई है।

पालिका 2 1972 2019 से चरिकांन क्षेत्र (किमी 2 में क्षेत्र।

LULC	1972		1981		1992		2009		2019	
	क्षेत्र	%								
वेटलैंड	159.6	30.7	98.7	19.0	106.7	20.5	31.5	6.1	17.4	3.4
नमक पैन	38.3	7.4	36.1	6.9	42.8	8.2	64.1	12.3	72.9	14.0
नमक क्रस्ट	0	0.0	34.4	6.6	34.7	6.7	0.0	0.0	15.4	3.0
वनस्पति	17.9	3.4	87.6	16.9	5.3	1.0	84.1	16.2	34.1	6.6
अरावली की पहाड़ियाँ	3.5	0.7	3.3	0.6	3.3	0.6	3.2	0.6	3.2	0.6
खारी मिट्टी	64.3	12.4	49.1	9.4	90.7	17.5	118.3	22.7	112.6	21.7
बंजर भूमि	236.0	45.4	209.6	40.3	235.3	45.2	217.3	41.8	257.8	49.6
समझौता	0.5	0.1	1.1	0.2	1.1	0.2	1.4	0.3	6.5	1.3

परिवर्तन दर (तालिका 3) को के रूप में दर्शाया गया है।

1992 से 2009 तक, आर्दभूमि में -4-14% की कमी आई, इसके बाद नमक की परत में 5-88% अरावली की पहाड़ियों में 0.11% और बंजर भूमि में 0-45% की कमी आई, जबिक वनस्पित में 0.20%] और लवणीय मिट्टी में 1-78% सकारात्मक 2009 से 2019 तक, आर्द्रभूमि, वनस्पित, अरावली पहाड़ियों, नमक की पपड़ी और खारी मिट्टी ने क्रमशः 4.47% 5.95% 0.11% 0.00% और 0.48% द्वारा नकारात्मक ज्ञ दिखाया और नमक पैन, बंजर भूमि और बस्ती ने 1.36% का सकारात्मक ज्ञ दिखाया। 1.86% और 37.98% क्रमशः। इस दशक में बस्ती का उच्च ज्ञ मान है।ट्रांजिशन मैट्रिक्स (तालिका 4) आर्द्रभूमि (75 किमी) से लवणीय मिट्टी में रूपांतरण बताता है, बंजर भूमि से 22.5 किमी' तक बनस्पित में दूसरा सबसे बड़ा। अरावली की पहाड़ियों के 0.96 किमी को बंजर भूमि, लवणीय मिट्टी (21.67 किमी) को बंजर भूमि। 13.87 किमी और 12.11 किमी नमक की परत क्रमशः खारी गिट्टी और बंजर भूमि के लिए है

तालिका 3: LULC डायनेमिक डिग्री K:प्रतिशत)

एलयूएलसी कक्षाएं	1972-81	1981-92	1992–09	2009-19
वेटलैंड	-4.23%	0.73%	-4.14%	-4.47%
नमक पैन	-0.63%	1.68%	2.93%	1.36%
नमक क्रस्ट	0.00%	0.08%	-5.88%	0.00%

वनस्पति	43.38%	-8.54%	88.20%	-5.95%
अरावली की पहाड़ियाँ	-0.56%	0.06%	-0.11%	-0.11%
खारी मिही	-2.62%	7.71%	1.78%	-0.48%
बंजर भूमि	-1.24%	1.11%	-0.45%	1.86%
समझौता	12.66%	0.43%	1.25%	37.98%

तालिका 4: 1981 2019 से ट्रांजिशन मैट्रिक्स

	2019	365 5	*	-54		30	80	25	
1981	अरावली की पहाड़ियाँ	बंजर भूमि	खारी मिट्टी	नमक क्रस्ट	नमक पैन	समझौता	वनस्पति	जल श्रोत	कुल योग
अरावली की पहाड़ियाँ	2.12	0.96	0.00	0.00	0.01	0.01	0.11	0.01	3.23
बंजर भूमि	1.02	155.46	3.54	1.04	21.26	3.25	22.57	0.55	208.69
खारी मिट्टी	0.00	21.67	17.86	2.96	4.47	0.04	1.97	0.10	49.08
नमक क्रस्ट	0.00	12.11	13.87	4.33	2.99	0.10	0.95	0.08	34.43
नमक पैन	0.00	0.89	0.32	1.92	29.21	0.33	0.96	2.41	36.04
समझौता	0.08	66.07	1.22	0.26	11.63	2.78	7.35	0.40	89.79
वेटलैंड	0.00	0.70	75.84	4.86	3.30	0.02	0.16	13.87	98.74
कुल योग	3.22	257.85	112.65	15.38	72.86	6.52	34.09	17.43	520.01

समृद्ध है. 6.19 मीटर में जिप्सम, कैल्साइट, डोलोमाइट, पॉलीफैलाइट, चेनाइट बिना नमकीन और 19 से नीचे है। मी में प्री-कैम्ब्रियन रॉक बेसमेंट है जिसमें शिस्ट, फिलाइटस और क्वार्टजाइट शामिल हैं। हालांकि, दशकीय विश्लेषण में कहा गया है कि छह ऊर्धवाधर मिट्टी के चाल दांव पर है। भारत सरकार द्वारा अनुमोदित एकमात्र तरीका पान और क्यारों के माध्यम से नमकीन का संग्रह है। पिछले दो दशकों में 2000 अवैध नलकूप और 240 बोरवेल बनाए गए है। सतह और उप-सतह दोनों से 300 मिलियन अमरीकी डालर मूल्य की नमकीन चोरी। 1963 की इमेजरी के परिणाम यह नहीं बताते है कि अनधिकृत पैन थे। इसने 1972 में अधिकृत सांगर साल्ट लिमिटेड द्वारा 7.4% पर कब्जा कर लिया। भीरे-धीरे 1992 2009 और 2019 में अतिक्रमण बढ़कर क्रमशः 8.2 12.3 से 14.10% हो गया। नागौर में हाइड्रोलॉजिकल संरचनाओं के निर्माण के कारण बड़ा अतिक्रमण दिखाई दिया। अन्य खतरे पशुपालन, अवैध शिकार, सीवेज डिस्चार्ज, ट्रेल्स, वाहन परीक्षण हैं।

आर्द्रभूमि संपर्क और पोषी संरचना का नुकसान: -

3 किमी एसएसएल बफर जोन के भीतर, निलयासर, देवयानी सरोवर और रतन तालाब पिक्षयों द्वारा प्रजनन, भोजन और बसने के लिए जुड़े हुए हैं। उनकी कनेक्टिविटी जल बजट हाइड्रोफाइट्स, हाइड्रिक मिट्टी, शिकारी स्थिति, भोजन की उपलब्धता, जल-अविध, आर्दभूमि पिरेसरों, स्थलाकृति, भूगोल और मौसम पर निर्भर करती है।

हालािक, उपग्रहों के परिणाम 4% पर 30.4 से 3.4% तक लगातार गिरावट दिखाते है। इसने पक्षी को कही और जाने के लिए मजबूर कर दिया है। सिकुडन के कारण, 39 जलीय और 80 स्थलीय उत्पादको 133 प्राथमिक और द्वितीयक उपभोक्ताओं और 279 पिक्षियों के साथ तृतीयक उपभोक्ताओं के साथ इसकी जटिल पोगी संरचना दाव पर है। पानी की उपलब्धता, स्तर, गहराई और गाइक्रोबायोटा के आधार पर, आर्दभूमि कनेक्टिविटी को तीन प्रकारों में बांटा गया हैय एसएसएल के लिए नीचे निवास, सतह और किनारे के जानवरों को शामिल करें।

पॉलीपोडियम एसपी जैसे नीचे और कीचड़ में रहने वाले जानवर। और चिरोनोमस सपा। जुलाई से दिसंबर तक अनुकूल मौसम में जीवित रहते हैं, जब लवणता 9.6 से 72.6% होती है, कार्बन डाइऑक्साइड 48 से 56.2 मिलीग्राम लीटर के बीच होती है, और ऑक्सीजन 42 से 27.8 मिलीग्राम लीटर के बीच होती है।

सति जानवरों में प्लवक और नेक्टन दोनों होते हैं। फाइटोप्लांकटन (डनलीएला सलाइन अपानोथेका हेलोफाइटिका स्पाइरुलिना एसपी और जोप्लांकटन प्रोटोजोऊन, क्रस्टेशियंस और नेकटन के नुम्ली स्टेनोहालाइन हैं जो अनुकूल स्थिति के दौरान जीवित रहते हैं, और प्रतिकूल परिस्थितियों के दौरान यूरीहैलिन जानवरों (आर्टेनिया सलीना एफिड्रा मैकेलारिया और एरिथेरा मैकेलारिया) द्वारा प्रतिस्थापित किए जाते हैं। 164% तक लवणता को सहन करता है, और गई से जून में गायब हो जाता है, जब झील प्राकृतिक रूप से सूख जाती है। जबीदुरा रिमरिया, कोनियोविजयोगस एसपी द्वारा प्रतिनिधित्व किए गए किनारे के जानबर और अन्य अनुकूल अबिध के दौरान जीवित रहते हैय हालांकि, वे प्रतिकूल परिस्थितियों के दौरान कोर की यात्रा करते है। हालांकि, ये प्रजातियाँ उपलब्ध नहीं हो सकती है क्योंकि झील सिकुइ रही है।

प्रबंधन और बहाली क्षमता

जब खारे झीलों को लगातार उजाड़ दिया जाता है. तो वे धूल के पात्र बन सकते हैं जो मनुष्य और पर्यावरण दोनों के लिए हानिकारक है, जैसा कि कैलिफोर्निया में ओवेन्स झील के मामले में या उर्मिया झील के मामले में या 40000 मीट्रिक के नुकसान के रूप में नमकीन श्रींगा के अरब डॉलर के वैश्विक बाजार को ध्वस्त कर देता है। टन मत्स्य पालन और अरल सागर में 60000 नौकरिया।सिकुड़ी हुई खारी झीले पारिस्थितिक डिस्कनेक्ट बनाती हैं, न तो अद्वितीय हेलोफाइट्स का समर्थन करती है और न ही राजहंस या अन्य पिक्षयों को आकर्षित करती हैं। इसलिए इस बात की तत्काल आवश्यकता है कि सांभर झील पर तत्काल ध्यान दिया जाए। यदि नहीं, तो इसे ओवेन्स लेक के मामले में उत्पन्न राजस्व की तुलना में बहाली के लिए अधिक पूंजी की आवश्यकता होती है, जिसके लिए 3.6 बिलियन अमेरिकी डॉलर इसकी धूल शमन के लिए खर्च किए गए थै।

वर्तमान चरण में, यह इसके भौतिक रासायनिक समायोजन के पुनर्निर्माण और देशी वनस्पतियों और जीयों के पुनरूपादन के माध्यम से सभच है। नमक श्रमिकों को स्वास्थ्य सुरक्षा, प्रोत्साहन और पुरस्कार पर जोर दिया जाना चाहिए तािक अधिक से अधिक लोग इस झील के बुद्धिमान उपयोग में भाग ले सकें। चेक डैम और एनीकट को ध्वस्त करना, उप-सतह नमकीन संग्रह पर प्रतिबंध, बिजली के पंपों का उपयोग करना, झील में और उसके आसपास अवैध नमक पान अतिक्रमण को बड़नीय अधिनियम घोषित किया जाना चाहिए 3 किमी बफर जोन तक के निर्माण को शतो कस्ट्रक्शन जोन घोषित करना, नियंत्रित करना। सीवेज निपटान, जल निवास अविध में वृद्धि। जलीय जैव विविधता बढ़ाने, हाइड्रोडायनामिक्स, पोषक चक्रण, वनस्पति और गैर-वनस्पति उत्पादकता, कैस्केडिंग ट्राफिक स्तर

पर ध्यान केंद्रित किया जाना चाहिए। इन कदमों से एसएसएल को न केवल अपनी पुरानी स्थितियों को बहाल करने में मदद मिलेगी बल्कि लंची अविध के लिए राजस्व उत्पन्न करने, अधिक लोगों को रोजगार प्रदान करने और अधिक प्रवासी पिक्षयों को आकर्षित करने में भी मदद मिलेगी।

निष्कर्ष: -

वर्तमान लेख में हमने 10 दशको (1963-2059) में भारत के अर्ध-शुष्क क्षेत्र में सबसे बड़े अंतर्देशीय खारा रामसर स्थल को प्रभाचित करने वाले प्रमुख कारकों की पहचान की है। हमने सीए-माकोच मॉडल का उपयोग भू-स्थानिक प्लेटफॉर्म का उपयोग करके पहचान के लिए जमीनी टिप्पणियों के साथ किया। परिणाम 1972 से 2019 तक आर्दभूमि में 30.7 से 3.4% की कमी दिखाते हैं। बाद में कंजर भूमि में 4.2% की वृद्धिय नमक पैन 6.6% और निपटान 1.2% 2019 तक। इसी तरह, भविष्य की भविष्यवाणी से पता चलता है कि 40% आर्द्रभूमि और 120% लवणीय मिट्टी का नुकसान और 30% वनस्पति में शुद्ध वृद्धि, 40% बस्ती, 10% नमक पैन, 5% बंजर भूमि, और 20% की शुद्ध हानि, प्रत्येक अरावली पहाड़ियों द्वारा और नमक की पस्त। प्रमुख चालक अवैध नमक पैन अतिक्रमण, अतिरिक्त भूजल निकासी, बढ़ते निपटान क्षेत्र और पानी का मोड़ हैं। एक साथ लिया गया, हमारे निष्कर्ष और पिछले अध्ययनों के निष्कर्ष एक बंजर भूमि की ओर पूरी तरह से सूखने की ओर इशारा करते हैं। इसके बाद, यह अरबों डॉलर का राजस्व उत्पन्न करने, या लाखों प्रवासी पिक्षयों को आकर्षित करने या हजारो नमक अमिकों को रोजगार प्रदान करने में सक्षम नहीं होगा। हमारे निष्कर्ष एक नई बहाली रणनीति की पेशकश करते है जो पारिस्थितिकी तंत्र की बहाली पर सयुक्त राष्ट्र दशक के अगले दशक के लिए प्राथमिक रुचि का हो सकता है।

संदर्भ

- 1.विलियास डब्ल्यूडी। नमक झीलों का संरक्षण। हाइड्रोबायोलॉजी। 1993 सितम्बर 267 (1) 291-3061
- 2.विश्व की लवणीय झीलों का द्वास। प्रकृति भूविज्ञान 2017 नवंबर 10:11:0816-211
- 3.मेग फ जलवायु परिवर्तन और चरम मौसम के कारण खारे झीलों का हास होता हैरू ग्रेट साल्ट लेक का प्रदर्शन। जलवायु । 2019 फरवरीय7 (2-19
- 4. बुरातिया गणराज्य में शुष्क पारिस्थितिक तंत्र की स्थानिक और अस्थायी परिवर्तनशीलता का आकलन। शुष्क पारिस्थितिक तत्र । 2020 10:114-221
- 5.वेली आईए विलियम्स डब्ल्यूडी। दक्षिण-पूर्व ऑस्ट्रेलिया के कुछ खारे झीलों पर रासायनिक और जैविक अध्ययन। सम्द्री और मीठे पानी का अन्संधान । 1966172)=177-228-
- 6.हे आरएल। नमकीन झीलों और मिट्टी का फिलिप्लिट। अमेरिकन मिनरलोगिस्टरू जर्नल ऑफ अर्थ एंड प्लैनेटरी मैटेरियल्स 1964-1 499-101366-871
- 7.हैमर यूटी। लवणीय झीलों में प्राथमिक उत्पादन। नमक की झीलें। 1981:47-57-
- 8. गैट जेआर। ताजा और खारी झीलों के स्थिर समस्थानिक। झीलों के भौतिकी और रसायन विज्ञान में 1995| (पीपी। 139-165)। रिव्रगर, बर्लिन, हीडलबर्ग।
- 9. जोन्स बीएफ, देवकंपो डीएम। खारे झीलों की भू-रसायन। भू-रसायन विज्ञान पर ग्रथ। 2003 दिसंबर 5:6051
- 10. ब्रास्काया एवी, मालुष टीके, लाजरेवा ईवी, तरण ओपी रोजानोव एएस, एफिमोव वीएम, एट अल। नोवोसिबिसंक क्षेत्र (रूस) में खारा झीलों के सूक्ष्मजीव समुदायों की संरचना के लिए वर्यावरणीय कारकों की भूमिका । बीएमसी माइक्रोबायोलॉजी | 2010- 16:161-4-
- 11. दिव्यांश के, शर्मा एलके, राज ए. ए मैक्सेंट मॉडलिंग विद ए जियोस्पेशियल अप्रोच फॉर द हैबिटेट उपयुक्तता के लिए फ्लेमिंगो इन एवेनसिंग रामसर साइट (सांगर झील, भारत) बदलते जलवायु परिदृश्यों पर। बायोरेक्सिव 2019 1:73705
- 12.यादव एके, वर्धन एस कश्यप एस, याडीगेरी एम, अरोड़ा डीके। साभर साल्ट लेक, भारत से आरकारएनए जीन क्लोन और सेलुलर आइसोलेट्स के बीच एक्टिनोमाइसेट्स विविधता। व साइिटफिक थंड जर्नल । 2013-12013
- 13.काओ एम, झू वाई, क्यान जे. झोउ एस. लू जी. चेन एम. एट अल। वैश्विक परिवर्तन मूल्यांकन मॉडल और सेलुलर ऑटोमेटा को एकीकृत करके स्थानिक अनुक्रमिक मॉडलिंग और वैश्विक भूमि उपयोग और भूमि कवर परिवर्तनों की भविष्यवाणी। पृथ्वी का भविष्य 2019 71102-16
- 14.कुआर्सगा जेसी, फंगलर डब्ल्यू वारस एच, बेख्तियार के, ब्रोट्रेगर एग, होकर एम। क्या सतत विकास लक्ष्यों को पूरा किया जाएगा? वर्तमान और भविष्य की वैश्विक गरीबी का आकलन। पालग्रेव कम्युनिकेशंस | 2018 मार्च 2004:1)-1-8-

एलजेएईआर/सितंबर-अक्टूबर 2020/खंड-9/अंक-2

15.सिह बीपी, नेहा एस, सिंह एसपी। राजस्थान की साभर झील के आधुनिक नमक (हलाइट) के निक्षेप और उनकी प्रारंभिक अवस्थाएँ। वर्तमान विज्ञान | 2013-104(11:1482-4-